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It is essential to extract the discriminative information for similar handwritten Chinese character recog-
nition (SHCCR) that plays a key role to improve the performance of handwritten Chinese character rec-
ognition. This paper first introduces a new manifold learning based subspace learning algorithm,
discriminative locality alignment (DLA), to SHCCR. Afterward, we propose the kernel version of DLA, ker-
nel discriminative locality alignment (KDLA), and carefully prove that learning KDLA is equal to conduct-
ing kernel principal component analysis (KPCA) followed by DLA. This theoretical investigation can be
utilized to better understand KDLA, i.e., the subspace spanned by KDLA is essentially the subspace
spanned by DLA on the principal components of KPCA. Experimental results demonstrate that DLA and
KDLA are more effective than representative discriminative information extraction algorithms in terms
of recognition accuracy.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, handwritten Chinese character recognition
(HCCR) has made great progress in both research and practical
applications. Unconstrained online HCCR, however, is still an open
problem remaining to be solved, because it is still challenging to
reach high recognition rate considering the high diversity of hand-
writing styles and large category set (Gao and Liu, 2008; Leung and
Leung, 2010; Liu et al., 2010; Shao et al., 2011). In constrained
HCCR, recognition rate can generally reach to over 98.5%; but in
unconstrained online HCCR, the recognition rate drops to 92.39%
(Liu et al., 2010).

Many effective methods have been proposed to promote the
recognition rate in cursive online or offline HCCR. Gao and Liu
(2008) presented a linear discriminant analysis (LDA)-based com-
pound distance method to boost the recognition rate. Leung and
Leung (2010) presented critical region analysis, which can distin-
guish one character from another similar character by emphasizing
the critical regions. All of the methods above are concerned with
constructing a globally linear transformation to improve recogni-
tion accuracy.

In fact, one of the main reasons for the performance drop in
unconstrained online HCCR lies in that similar Chinese character
often share an analogous structure, and have only presence or ab-
sence of a stroke in a specific region. Fig. 1 shows some similar
cursive samples from the CASIA-OLHWD1 database (Wang et al.,
2009). There is usually only one classifier for all classes in many
HCCR systems. Systems of this sort are easy to construct, but fail
to distinguish very similar Chinese characters.

Therefore many Chinese character recognition engines (Leung
and Leung, 2010) adopt a hierarchical classifier to overcome the
shortage of a single classifier. When a newly imported character
is identified by the first-level, the recognition results can be reor-
dered by the confidence score in general. The second-level classi-
fier aims to distinguish the top confidence score results. Many
methods (Gao and Liu, 2008; Shao et al., 2011; Leung and Leung,
2010) have been presented to identity the small subsets of Chinese
characters. These methods aim to effectively extract the discrimi-
native information of the simplest circumstance, i.e., a pair of sim-
ilar Chinese character classes.

Although the recognition rate can be boosted, there is still room
to obtain further improvement. First, using pairwise classifiers to
reorder the candidate character in second-level classification task
is an expensive approach, because the number of classifiers is
CðC � 1Þ=2 for a C-class classification problem. The time cost and
space cost of this strategy is not accepted easily in general. Second,
discriminative information extraction is considerably important in
similar handwritten Chinese character recognition (SHCCR). We
thus apply the DLA (discriminative locality alignment) manifold
learning (Shao et al., 2011) and static candidate generation
technique (Liu and Jin, 2007) to address these issues. Fig. 2 shows
the diagram of the proposed recognition system. At the first level
classification, the similar Chinese candidate sets for each class
is generated using the static candidate generation technique
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Fig. 1. Similar samples in handwritten Chinese character from CASIA-OLHWD1
database.
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(Liu and Jin, 2007). Then when the first candidate is given by the
first level classification, the system retrieves the corresponding
similar Chinese candidate set according to the first candidate on
which the second level classification is carried. DLA or kernel
DLA (KDLA, which is proposed in this paper) projection matrix is
applied in the selected similar character set on the consideration
to improve the recognition accuracy by learning more effective dis-
criminative features in the similar candidate set.

Linear discriminant analysis (LDA) (Fisher, 1936) is one of the
widely used similar Chinese characters discriminative feature
extraction methods in the literature (Gao and Liu, 2008; Jin et al.,
2010; Leung and Leung, 2010; Shao et al., 2011). Traditional LDA,
however, suffers from the following drawbacks. First, it ignores
the local structure of samples, which makes it fail to discover the
nonlinear structure hidden in the high dimensional space. Second,
LDA is confronted with the small sample size (SSS) problem (Bian,
2011; Tao et al., 2009; Tao et al., 2007). We need a large number of
samples for model training.

Manifold learning based dimension reduction algorithms are
the powerful tools for finding the intrinsic structure of a set of sam-
ples embedded in a high dimensional ambient space and attracted
intensive attention in recent years (Belkin and Niyogi, 2002;
Bengio et al., 2004; Cai et al., 2005; Guan, 2012; Guan, 2012; He
and Niyogi, 2004; Si, 2010; Tian, 2012; Wang, 2011; Zhou, 2011).
Therefore, to overcome the above problems of LDA for performance
improvement, we introduce a popular supervised manifold
learning approach to SHCCR, which is called discriminative locality
Fig. 2. The static candidate generation
alignment (DLA) (Zhang et al., 2008). DLA is developed under the
umbrella of patch alignment framework (PAF) (Guan, 2011; Zhang
et al., 2009). PAF includes most existing manifold learning based
dimension reduction algorithms as special cases and shows that
these algorithms can be divided into two steps: patch optimization
and global alignment. Based on PAF, we can easily understand the
common points and essential differences of different algorithms,
and develop new manifold learning based dimension reduction
algorithms. DLA is a special implementation of PAF for classifica-
tion. It contains two stages. In the first stage, DLA preserves the dis-
criminative information in a local patch through integrating two
criteria that the distances between the intra-class samples will
be as small as possible and the distance between the inter-class
samples will be as large as possible. In the second stage, DLA inte-
grates all the weighted part optimizations to form a global sub-
space structure through an alignment operation.

As a manifold learning based method, DLA has many attractive
properties for SHCCR compared to LDA. First, DLA focuses on local
discriminative structure for each training sample, and it captures
the discriminative information at the sample level, and thus it is
more powerful than LDA. Second, DLA obtains robust classification
performance under the condition of small sample size. Third, it
does not need to compute the inverse of a matrix, and thus it does
not face the matrix singularity problem. In addition, our experi-
mental results show that a smaller size projection matrix obtained
by DLA compared with that obtained by LDA can achieve a high
recognition rate for SHCCR. That means DLA is able to keep a higher
recognition rate with less computing and storage costs, which is
attractive for practical applications.

However DLA is a linear algorithm, which cannot capture the
nonlinearity of the samples. Motivated by kernel methods (Geng,
2011; Muller et al., 2001) successfully used for discovering the
intrinsic nonlinear structure, we generalize DLA to the kernel fea-
ture space as the Kernel discriminative locality alignment (KDLA).
According to the so-called ‘‘kernel trick’’, we map the original low-
dimensional input Euclidean space to a high-dimensional Hilbert
space, in which samples from different classes are almost linearly
separable. KDLA obtains a set of optimal discriminative basis vec-
tors in the high-dimensional Hilbert space. Therefore, KDLA per-
forms much better than DLA. We prove that learning KDLA is
equivalent to learning DLA in the space spanned by principal
components of kernel principle component analysis (KPCA)
technique based SHCCR system.
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(Schölkopf et al., 1998). This helps us to understand the difference
between KDLA and DLA. In this paper, we conducted experiments
on ten difficult recognition collections of similar handwritten Chi-
nese characters to compare DLA and KDLA to popular baseline
algorithms. The effectiveness of DLA and KDLA has been demon-
strated by experimental results.

The rest of the paper is organized as follows: Section 2 intro-
duces the static candidate generation technique. Section 3 intro-
duces DLA for extracting discriminative features for SHCCR and
then details the basic formulation and theoretical analysis of the
proposed KDLA algorithm. Experiments and empirical analysis
are presented in Section 4. Section 5 concludes this paper.

2. The static candidate character set

It is well known that the most Chinese character recognition en-
gine which only has a single classifier to identify a newly imported
character. Although this strategy is easy to implement, it fails to
separate very similar Chinese characters. In this paper, we intro-
duce static candidate generation (SCG) (Liu and Jin, 2007) to im-
prove the performance of the similar character sets recognition.

2.1. Static candidate generation (SCG)

There are two ways to implement SCG, which are distance-
based similar Chinese character sets generation and frequency-
based similar Chinese character sets generation.

The distance-based SCG assumes that the distances of the sim-
ilar character feature templates are close to each other in the fea-
ture space. Given a Chinese character and its feature template Ci,
we generate k� 1 candidates for Ci by selecting k� 1 nearest fea-
ture templates of Ci, i.e., Ci1 ;Ci2 ; . . . ;Cik�1

. Therefore, the static can-
didate set with respect to Ci is Ci;Ci1 ;Ci2 ; . . . ;Cik�1

� �
. Since this

technique typically only utilizes the sample mean to calculate
the distances, it fails to perform well.

The frequency-based SCG method (Liu and Jin, 2007) first gen-
erates the original k candidates for some samples of Chinese char-
acter Ci according to the classifier confidence score. The setting of
the parameter k is according the expected hitting rate of selecting
the correct SCG set corresponding to a given recognition candidate.
If the expected hitting rate is high, we need to adjust the k to a
large number which will result in larger storage cost. In our sys-
tem, we set k ¼ 10 with a hitting rate about 99%. Afterward, we
use the classifier to recognize all the training samples of all the
remaining classes other than Ci, and calculate the frequency of
the samples that are incorrectly recognized as the character Ci.
Finally, we can get the final k similar candidate set of Ci according
to the error recognition frequency.

2.2. Similar character collection

The similar character collection is processed by using the fre-
quency-based SCG method. The process is carried out as follows:
(1) we generate the original static candidate class set for each
Chinese character; (2) samples are collected according to the ten
selected class sets which are difficult to recognize in the bench-
mark dataset; (3) we use the character samples corresponding to
the ten generated static candidate sets as the similar character col-
lections in our experiments.

3. Discriminative information extraction

In most of the SHCCR solutions reported in the literature (Gao
and Liu, 2008; Leung and Leung, 2010), LDA is applied to extract
discriminative information. However, we confront the problem
that the number of the training samples is insufficient let alone
that LDA ignores the local geometry of the sample distribution.
Therefore, we introduce a supervised manifold learning algorithm
DLA to improve the performance of discriminative information
extraction in SHCCR. Afterward, we present a kernel method called
kernel discriminative locality alignment (KDLA) to achieve better
performance for subsequent classification. In particular, KDLA ben-
efits from discovering the nonlinearity of the sample distribution.

We consider the general problem of discriminative information
extraction. We denote a set of training samples in a high-dimen-
sional space RD by X ¼ ½x1; x2; . . . ; xN� 2 RD�N , each of which has a la-
bel Ci 2 Zn. The objective of discriminative information extraction

aims to find a linear project matrix U 2 RD�d to project samples
from the high-dimensional space RD to the corresponding low-

dimensional subspace Rd, wherein d < D. Therefore, the corre-
sponding low dimensional representation is given by Y ¼ UT X ¼
½y1; y2; . . . yN� 2 Rd�N .

3.1. Linear discriminant analysis

LDA is a classical algorithm for discriminative information
extraction. It aims to find a subspace by maximizing the trace of
the between-class scatter matrix Sb and minimizing the trace of
within-class scatter matrix Sw simultaneously (Fisher, 1936). The
objective function of LDA is given by:

arg max
U

trðUT SbUÞ
trðUT SwUÞ

; ð1Þ

Sw ¼
XC

j¼1

XNj

i¼1

ðxðjÞi �mjÞðxðjÞi �mjÞT ; ð2Þ

Sb ¼
XC

j¼1

Njðmj �mÞðmj �mÞT ; ð3Þ

where Nj is the training sample size of the jth class, C is the number
of classes, mj is the sample mean of the jth class, and m is the sam-
ple mean of all samples. The projection matrix U is obtained by
maximizing Eq. (1). If Sw is not singular, Uis given by the leading
d eigenvectors corresponding to the d largest eigenvalues of S�1

w Sb.

3.2. Discriminative locality alignment

Different from LDA, DLA aims to preserve the discriminative
information locally. In particular, DLA conducts ‘‘part optimiza-
tion’’ on each training sample, so that in a low dimensional
subspace, the average distance between the sample and its intra-
class neighbors will be as small as possible, while the average
distance between the sample and its inter-class neighbors will be
as large as possible. DLA then operates ‘‘whole alignment’’ to inte-
grate all the weighted part optimizations to learn a global subspace
structure (Zhang et al., 2009; Zhang et al., 2008). A technical review
of DLA is given below for obtaining the kernel version of DLA.

3.2.1. Part optimization
The part optimization of DLA starts from each training sample

and the corresponding local patch. Each patch is built by a sample
and its neighbors including both intra-class and inter-class samples.

For a given sample xi and its corresponding patch, we can find m1

closest samples xi1 ; . . . ; xim1 that from the same class of xi , and m2

closest samples xi1 ; . . . ; xim2
that from different classes of xi. Then

the local patch for xi is denoted by Xi ¼ ½xi; xi1 ; . . . xim1 ; xi1 ; . . . ; xim2
�.

The part optimization obtains a new low dimensional representa-
tion Yi ¼ ½yi; yi1 ; . . . yim1 ; yi1 ; . . . ; yim2

�, in which the inter-class

distance is maximized and the intra-class distance is minimized.



Table I
Similar characters sets.

Fig. 4. Some corresponding handwritten samples of Table I. Fig. 5. Recognition rate vs. m1 and m2 for DLA parameters optimization.

Fig. 3. The process of part optimization.
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Fig. 3 illustrates the process of part optimization in the situation
when m1 ¼ 4 and m2 ¼ 3. It shows that in the projected subspace,
yi (yellow triangle) is close to the samples from intra-class (red tri-
angle), whereas the distances between yi and the samples from
other classes (blue circle and green square) are large.

The optimization function in part optimization is given by:

arg min
yi

Xm1

j¼1

yi � yij
�� ��2 � b

Xm2

p¼1

yi � yip

��� ���2
 !

; ð4Þ

where
Pm1

j¼1 yi � yij
�� ��2 is the distances between the intra-class sam-

ples,
Pm2

p¼1 yi � yip

��� ���2
is the distance between the inter-class sam-

ples, and b 2 ½0;1� is a trade-off parameter, which can balance the
contributions of intra-class samples and those of the inter-class
samples in part optimization.

By utilizing the coefficients vector xi¼½1; . . . ;1;
zfflfflfflffl}|fflfflfflffl{

m1�b; . . . ;�b
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

m2 �T ,
we deduce (4) to

arg min
yi

Xm1

j¼1

yi � yij
�� ��2 xið Þj þ

Xm2

p¼1

yi � yip

��� ���2
xið Þpþm1

 !

¼ arg min
yi

Xm1þm2

j¼1

yFi 1f g � yFi jþ1f g

��� ���2
xið Þj

 !
; ð5Þ

where Fi ¼ i; i1
; . . . ; im1 ; i1; . . . ; im2

n o
.

3.2.2. Whole alignment
After part optimization, we obtain N different optimizations. In

the whole alignment stage, we integrate these part optimizations
as a whole

arg min
Y

XN

i¼1

Xm1þm2

j¼1

yFi 1f g � yFifjþ1g

��� ���2
ðxiÞj

 !
: ð6Þ

By utilizing the selection matrix Sið Þpq ¼ 1, if p ¼ Fi qf g, otherwise 0,
we have Yi ¼ YSi. Therefore, we have

arg min
Y

XN

i¼1

tr Yi
�eT

m1þm2

Im1þm2

" #
diagðxiÞj �eT

m1þm2
Im1þm2

h i
YT

i

 !
¼

arg min
Y

XN

i¼1

tr YSiLiS
T
i YT

� �
¼ arg min tr

Y
Y
XN

i¼1

SiLiS
T
i

 !
YT

 !
¼

arg min tr
Y

YLYT
� �

; ð7Þ

where em1þm2 ¼ 1; . . . ;1½ �T 2 Rm1þm2 ; Im1þm2 ¼ diag 1; . . . ;1
zfflfflfflfflffl}|fflfflfflfflffl{

m1þm2

� 	
;

Li ¼
Pm1þm2

j¼1 ðxiÞ �xT
i

�xi diagðxiÞ


 �
2 R m1þm2þ1ð Þ�ðm1þm2þ1Þ; and LðFi; FiÞ  

LðFi; FiÞ þ Li is the alignment matrix (Zhang and Zha, 2004).
We impose a constraint UT U ¼ Id on (7) to determine the pro-

jection matrix U according to Y ¼ UT X, wherein Id is a d� d identity
matrix. Thus (7) is transformed to



Fig. 6. Recognition rate vs. dimensionality reduction on the ten similar character collections.

Table II
Average recognition rates.Ni is the training sample size in each class. d is the reduced dimensions.

d Ni ¼ 30 Ni ¼ 80

LDA SLPP MFA DLA KDLA LDA SLPP MFA DLA KDLA

1 0.256 0.231 0.254 0.357 0.403 0.335 0.331 0.284 0.361 0.426
2 0.425 0.347 0.414 0.615 0.633 0.527 0.525 0.478 0.606 0.672
3 0.551 0.472 0.542 0.760 0.747 0.634 0.631 0.590 0.759 0.771
4 0.638 0.556 0.635 0.822 0.814 0.701 0.695 0.682 0.827 0.818
5 0.696 0.635 0.698 0.869 0.860 0.755 0.750 0.743 0.872 0.848
6 0.736 0.686 0.743 0.898 0.886 0.803 0.799 0.805 0.906 0.879
7 0.765 0.724 0.780 0.913 0.906 0.839 0.834 0.835 0.921 0.915
8 0.793 0.751 0.803 0.923 0.925 0.862 0.860 0.856 0.933 0.936
9 0.813 0.780 0.827 0.928 0.937 0.881 0.877 0.879 0.935 0.948
10 NA 0.781 0.828 0.928 0.937 NA 0.878 0.880 0.936 0.948
11 NA 0.782 0.827 0.928 0.938 NA 0.880 0.882 0.936 0.949
12 NA 0.780 0.826 0.928 0.938 NA 0.881 0.881 0.935 0.949
13 NA 0.781 0.827 0.928 0.938 NA 0.882 0.881 0.936 0.949
14 NA 0.781 0.827 0.928 0.938 NA 0.883 0.879 0.936 0.949
15 NA 0.783 0.827 0.928 0.938 NA 0.883 0.879 0.936 0.949
16 NA 0.787 0.827 0.928 0.938 NA 0.883 0.880 0.936 0.949
17 NA 0.787 0.827 0.928 0.938 NA 0.881 0.880 0.935 0.949
18 NA 0.786 0.826 0.928 0.938 NA 0.881 0.881 0.935 0.949
19 NA 0.788 0.827 0.928 0.938 NA 0.883 0.879 0.935 0.949
20 NA 0.788 0.828 0.928 0.938 NA 0.884 0.880 0.935 0.949
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arg min
U

trðUT XLXT UÞ s:t:UT U ¼ Id: ð8Þ
We can transform (8) to a generalized eigenvalue problem (Jolliffe,
2002) and U is given by d eigenvectors associated with d smallest
eigenvalues of XLXT .
3.3. Kernel discriminative locality alignment

DLA is a linear algorithm, so we conduct DLA in the reproducing
kernel hilbert space (RKHS), which results in kernel discriminative
locality alignment (KDLA). We consider that the linear input space
can be mapped to a kernel feature space by a non-linear mapping:



Fig. 7. The recognition boxplots of different methods. There are two subfigures,
each of which corresponds to the performance obtained a particular number
(30,80) of labeled training samples of each class.
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u : RD ! F; ð9Þ

where F is a sufficiently high-dimensional feature space obtained by
utilizing a proper nonlinear mapping function u. In practice, it is
difficult to find such a nonlinear mapping function. However, we
can achieve the so-called RKHS through the kernel dot product

trick, i.e., kðx; x0Þ ¼ uðxÞTuðx0Þ. The kernel matrix formed by the gi-
ven samples is positive semi-definite (Shawe-Taylor and Cristianini,
2004). The commonly used kernels include Gaussian kernel

k x; x0ð Þ ¼ exp � x� x0k k2=2r2
� �

and polynomial kernel kðx; x0Þ ¼

ð1þ xT x0Þd.In KDLA, the local patch ~Xi ¼ u xið Þ;u xi1
� 

; . . . ;u xim1ð Þ;
�

u xið Þ; . . . ;u xim2

� �
� and ~Fi ¼ i; i1

; . . . ; im1 ; i1; . . . ; im2

n o
is the set of

indices on the patch. The alignment matrix L is obtained in an iter-

ative procedure ~L ~Fi; ~Fi

� �
 ~L ~Fi; ~Fi

� �
þ ~Li with the initialization

~L ¼ 0, where ~Li ¼
Pm1þm2ðxiÞj

j¼1 �xT
i

�xi diagðxiÞ

" #
. Then we have to solve

the eigenvalue problem ~X~L~XT ~u ¼ ~k~u, where ~X ¼ U ¼
u xið Þ; . . .u xNð Þ½ �. According to the representer theorem (Schölkopf

et al., 2001), we have ~u ¼
PN

i¼1
~hiu xið Þ, Then ~u ¼

PN
i¼1

~hiu xið Þ ¼ U~hi

and the eigenvalue problem can be rewritten as U~LUTU~h ¼ ~kU~h,
which is

~LK~h ¼ ~k~h; ð10Þ

where K is the gram matrix, in which an entry is given by
Kij ¼ k xi; xj

� 
.

The low-dimensional representation is given by

~yi ¼ ðeUÞTuðxiÞ ¼ eHT ki; ð11Þ

where eU ¼ ~u1; . . . ; ~uN½ �; eH ¼ ~h1; . . . ; ~hN

h i
and ki is the ith column of K.

In fact, the subspace spanned by KDLA is essentially the sub-
space spanned by DLA on the principal components of kernel prin-
ciple component analysis (KPCA) (Schölkopf et al., 1998). This fact
Table III
Best recognition rates. The number in the parentheses is the reduced dimensions.

SET 1 SET 2 SET 3 SET 4 SET 5 SET

Ni ¼ 30 LDA 0.797(9) 0.775(9) 0.782(9) 0.844(9) 0.8
SLPP 0.779(20) 0.761(10) 0.722(18) 0.844(20) 0.8
MFA 0.81(11) 0.805(10) 0.802(11) 0.862(12) 0.8
DLA 0.94(9) 0.933(9) 0.927(10) 0.945(9) 0.9
KDLA 0.949(9) 0.951(15) 0.936(9) 0.951(9) 0.9

Ni ¼ 80 LDA 0.869(9) 0.873(9) 0.866(9) 0.909(9) 0.8
SLPP 0.879(19) 0.877(20) 0.872(15) 0.916(11) 0.8
MFA 0.881(18) 0.883(20) 0.87(11) 0.921(10) 0.8
DLA 0.956(9) 0.94(9) 0.941(9) 0.957(10) 0.9
KDLA 0.958(13) 0.958(9) 0.952(14) 0.961(9) 0.9
is proved in the following theorem and is particularly important to
better understand KDLA.

Theorem. Learning a KDLA subspace is equal to conducting DLA in
the space spanned by the principal components of KPCA.
Proof. The kernel PCA is conducted by obtaining the principal
components on the kernel space. Denote the covariance matrix of
the training samples X ¼ ½x1; . . . ; xN� 2 RD�N in the RKHS by
C ¼ ð1=NÞ

PN
i¼1u xið Þu xið ÞT . For KPCA, we have find eigenvector u

and eigenvalue k satisfying Cu ¼ ku. This is equivalent to solving

uðxiÞT Cu ¼ kuðxiÞT u; i ¼ 1; . . . ;N: ð12Þ

We can prove that u ¼
PN

i¼1biu xið Þ, which is similar to the proof the
representer theorem (Muller et al., 2001). Then (12) is equivalent to
following optimization problem:

Kb ¼ kb; ð13Þ

the solution of (13) is the eigenvector bi ¼ bi;1; . . . ;bi;N

� �T and the
corresponding eigenvalue ki. The projection matrix of KPCA is given
by U ¼ u1; . . . ;uN½ �, each ui ¼

PN
j¼1biju xj

� 
¼ Ubi, where U ¼ u xið Þ;½

. . .u xNð Þ�. Normalize bi  bi= bik k
ffiffiffiffi
ki
p� 

, then we have uT
i uj ¼

bT
i U

TUbi ¼ bT
i Kb ¼ kbT

i b ¼ 1 and uT
i uj ¼ 0. So we have UT U ¼ I. Let

B ¼ b1; . . . ; bN½ �, since UT U ¼ UBð ÞTUB ¼ BT KB, we obtain BT KB ¼ I.
This result in BT B ¼ K�1. Consequently, the feature of projected data
in the KPCA is given by ŷi ¼ UTu xið Þ ¼ BT ki; ki is the ith column of K.

Therefore, the data processed by KPCA is X̂ ¼ BT K.
By first preprocessing the data with KPCA, i.e. X̂ ¼ BT K , the

eigenvalue problem of DLA becomes X̂L̂X̂T û ¼ k̂û. Similarly, we

have û ¼
PN

i¼1ĥix̂i according to the representer theorem. Then

ûi ¼
PN

j¼1ĥijx̂j ¼ X̂ĥi and the eigenvalue problem can be rewritten

as BT KL̂KBBT Kĥ ¼ k̂BT Kĥ. By multiplying B on the left side of the

equation we have BBT KL̂KBBT Kĥ ¼ k̂BBT Kĥ. That is

L̂Kĥ ¼ k̂ĥ: ð14Þ

The low dimensional representation is given by

ŷi ¼ ðÛ0ÞT x̂i ¼ ĤT ki; ð15Þ

where Û0 ¼ û01; . . . ; û0N
� �

and Ĥ ¼ ĥ1; . . . ; ĥN

h i
. It is direct that L̂ ¼ ~L

since the similarity matrix X̂T X̂ ¼ KBBT K ¼ K is the same as in KDLA.
Therefore, (14) is equivalent to (10) and ĥ ¼ ~h. Then we have ŷi ¼ ~yi,
which ends the proof. h
4. Experiments

We conduct experiments of SHCCR which contains the follow-
ing three steps:
6 SET 7 SET 8 SET 9 SET 10

77(9) 0.781(9) 0.789(8) 0.853(9) 0.828(8) 0.802(9)
58(9) 0.748(13) 0.774(19) 0.848(11) 0.827(19) 0.756(20)
77(14) 0.805(18) 0.798(12) 0.875(19) 0.854(10) 0.823(10)
27(12) 0.921(9) 0.899(8) 0.931(10) 0.926(8) 0.94(9)
35(11) 0.932(9) 0.898(9) 0.938(9) 0.946(15) 0.943(12)

88(9) 0.869(9) 0.866(9) 0.889(9) 0.882(9) 0.897(9)
95(15) 0.88(14) 0.866(20) 0.897(19) 0.894(20) 0.898(16)
89(15) 0.876(17) 0.866(11) 0.901(12) 0.882(10) 0.888(20)
24(10) 0.938(11) 0.9(12) 0.933(10) 0.934(9) 0.94(9)
48(9) 0.946(9) 0.914(11) 0.939(15) 0.952(9) 0.962(14)
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(a) Similar samples collection and feature extraction: In this
paper, the benchmark dataset is the SCUT-COUCH2009 data-
set (Jin et al., 2011). SCUT-COUCH2009 is an online uncon-
strained Chinese handwriting dataset, which contains 11
subsets of different vocabularies, including GB1, GB2, Let-
ters, Digit, Symbol, Word8888 etc., and all the samples are
collected from more than 190 subjects. In the following
experiments, the GB1 subset is used, which contains 3755
frequently used simplified Chinese characters in GB-2312-
80 standard. Ten difficult recognition collections of similar
handwritten Chinese characters are obtained by using the
aforementioned SCG method (Liu and Jin, 2007). Then the
elastic meshing (ELM) technique (Jin and Wei, 1998) is uti-
lized as a normalized method to solve the stroke location
and shape variability of intra-class character and the 8-
directional features (Bai and Huo, 2005) are extracted with
D ¼ 512 dimensions. We randomly divided each similar
samples collection into two separate subsets, which are
the training set and the test set. We utilize one of similar
character collections to tune the model parameters of DLA
and KDLA. Table I lists the ten similar character sets we used
in the following experiments. Fig. 4 shows some of the cor-
responding handwritten samples of Table I.

(b) Discriminative information extraction: We evaluate the per-
formance of DLA and KDLA by comparing them with three
representative algorithms, including LDA (Fisher, 1936),
supervised locality preserving projections (SLPP) (Cai et al.,
2005) and marginal fisher analysis (MFA) (Xu, 2007). These
algorithms have certain merits in their own rights. LDA is
a linear algorithm. SLPP, MFA and DLA are all popular man-
ifold learning algorithms which perform better than LDA in
many practical applications. It is worth noting that we
employ principal component analysis (PCA) (Hotelling,
1933) to remove redundant information before we conduct
LDA, LPP, MFA, and DLA. In the PCA step, we retain N � C
dimensions to ensure XðDp �WpÞXT (Xu, 2007) in MFA and
within-scatter matrix Sw in LDA (Lu et al., 2003) are non-sin-
gular, because the number of the original features of the
training samples is much larger than the number of training
samples. We retain N � 1 dimensions in SLPP and DLA to
preserve all the energy in this step in order to accelerate
the learning process. For KDLA, we use 100 leading eigenvec-
tors of KPCA to form the space for the subsequent DLA. In
our experiments, we select Gaussian kernel and r is empir-
ically set to 6. The implementation of KDLA is based upon
the theorem. In particular, we conduct KPCA followed by
DLA in the space spanned by the principal components of
KPCA.

(c) Classification: minimum euclidean distance classifier (MEDC)
is used for recognition.

4.1. Parameters selection for DLA and KDLA

Since the parameters setup for DLA is essential for its perfor-
mance, we carried out the DLA parameter optimization experi-
ments before we conduct SHCCR. We aim to find a proper range
for the dominant parameters m1 and m2 in DLA, wherein m1 is
the number of the samples from intra-class in a given patch, and
m2 is the number of the samples from inter-classes in the same
patch. Parameter b is set to an empirical value 0.15 and the
reduced dimension is set to 9.

Suppose Ni is the number of the training samples in the ith class
and N is the number of the total training samples. Then, m1 and m2

can be chosen in the ranges of 1;Ni � 1½ � and 1;N � Ni½ �,
respectively.
Fig. 5 shows the recognition rate against different m1 and m2 on
the similar character collection ‘‘ ’’. When Ni ¼ 30, different com-
binations of m1;m2 pairs result in different recognition rates. It is
worth noting that the red region represents the best performance
obtained by DLA. The best combination of m1 and m2 is m1 ¼ 29
and m2 ¼ 50, and the corresponding accuracy is 95.82%. When
the parameters are set to m1 ¼ 10 and m2 ¼ 30, the recognition
rate reaches 95.4%, which slightly lower than the best recognition
rate. In this paper, we choose to use this sub-optimal setting
m1 ¼ 10 and m2 ¼ 30 in the following experiments for the other
similar character sets to save computational cost. When Ni ¼ 80,
we use the same setting.

Parameters of KDLA are tuned in a way similar to the above pro-
cedure used to tune parameters of DLA.

4.2. Evaluation experiments for SHCCR

In the experiments, we evaluate the performance of DLA and
KDLA by comparing with three representative algorithms, includ-
ing LDA, SLPP and MFA. In the training stage, we randomly selected
(30,80) training samples for each class from the ten similar charac-
ters collection listed in Table I. Afterward, we randomly selected
100 samples for each class for test. The training set and the test
set are disjoint. For different algorithms, we used the same training
set and test set for performance evaluation. Fig. 6 shows the recog-
nition rate versus reduced dimensionalities for the ten similar
character sets. We observe that DLA/KDLA outperform others. We
also carry out experiments on the candidate sets directly without
dimensionality reduction. The average recognition rates over ten
similar character sets are 89.3% and 90.7% for 30 and 80 training
samples settings respectively.

For comparison convenience, we arrange the experiment results
in Tables II and III for the ten similar character sets. Table II lists the
average recognition rates over ten similar character sets for all the
five algorithms under two different settings. Table III lists the best
recognition rate with the corresponding reduced dimensionalities
for all the five algorithms under two different settings.

In addition, to further illustrate the recognition accuracy of the
proposed dimensionality reduction algorithm, we have compared
DLA and KDLA with the state-of-the-art algorithms, such as linear
and nonlinear support vector machines (SVM) (Geng, 2012; Tao
et al., 2006). In our experiments, we used LIBSVM (Chang and
Lin, 2001) to conduct the SVM classification experiments. The lin-
ear kernel and the RBF kernel have used in SVM. Fig. 7 reports the
associated recognition performances with statistical significance.

4.3. Analysis of the results

From Fig. 5, Tables II and III, the performance of DLA in SHCCR
can be analyzed in three aspects: first, in Fig. 5 and Table II, it is
shown that in the same reduced dimensions, the recognition rates
of both DLA and KDLA are significantly higher than other algo-
rithms. It also shows when the recognition rate is in the same level,
DLA and KDLA have a better performance of discriminative infor-
mation extraction than others under the same condition. For exam-
ple, we can see from Table II that the DLA and KDLA with reduced
dimension of 4 outperforms LDA with reduced dimension of 9 un-
der the condition that the Ni is set to 30. Second, in Fig. 5 and Table
II, it can be seen that in the same reduced dimensions, recognition
rates of DLA and KDLA under the different condition of Ni have just
a little variation; whereas the recognition rates of other algorithms
vary greatly. It demonstrates that the robustness of DLA and KDLA
is better than other algorithms under the condition of small size of
training samples. Last but not the least, in Fig. 5, it is shown that
KDLA can further improve the performance of discriminative fea-
ture extraction.
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In Fig. 7, we show the recognition rates boxplots of different
methods. There are two subfigures, each of which corresponds to
the performance obtained from a particular number (30,80) of la-
beled training samples of each class. These boxplots show KDLA
plus minimum Euclidean distance classifier is superior to the base-
line methods. It suggests the effectiveness of KDLA for discrimina-
tive feature extraction.

Similar to other kernel methods, KDLA needs more time and
space costs. The space costs mainly raised by the number of training
samples and the eigenvectors of each similar Chinese character sets.
In general, kernel methods need to keep all the training samples to
construct the kernel Gram matrix. For example, if the class number
is 3755, feature dimension is 512, the number of training samples of
each class is 80, when the 4-byte floating number is used, the space
cost is 3755� 512� 80� 4 bytes, about 586 M. In addition, if the
projection matrix W contains 12 eigenvectors, and the number of
candidate characters is 10, the space cost is 3755� 80�
10� 12� 4 bytes, about 137 M. We conduct experiments on a
Core2 E7500 2.93 GHz computer with a 4-Gbyte memory to test
KDLA’s time cost. All experiments were done in Matlab. Different
numbers (30,80) of training samples were selected for each class
and the number of candidates is set to k ¼ 10. The computational
time of 1000 test samples is 0.08 s and 0.17 s, respectively. Given
limited storage resource in a smart phone, in general, it is impossi-
ble to run an SHCCR system based on KDLA. However, with the
remarkable progress of the Internet technology, cloud computing
(Vaquero et al., 2011) becomes mature and already offers a lot of
services to public services (Gao et al., 2011). Thus, KDLA is applica-
ble on the cloud computing for smart phone users.
5. Conclusion

In this paper, a new manifold learning based subspace learning
algorithm, discriminative locality alignment (DLA), has been intro-
duced to similar handwritten Chinese character recognition
(SHCCR). Afterward, we propose the kernel version of DLA, Kernel
discriminative locality alignment (KDLA), and carefully prove that
learning KDLA is equal to conducting KPCA followed by DLA. Com-
paring to conventional LDA and representative manifold learning
based discriminative dimension reduction algorithms, such as
supervised LPP and MFA, DLA and KDLA have shown many com-
petitive and attractive properties, and they are superior to these
algorithms in terms of recognition accuracy. From our experi-
ments, we have the following observations:

(1) DLA and KDLA consistently achieve better classification per-
formance than representative algorithms in the SHCCR
experiments;

(2) In SHCCR, DLA and KDLA are robust and promising, and have
no matrix singular problem;

(3) DLA and KDLA are potentially useful for real world applica-
tions, because they perform well with a smaller size projec-
tion matrix than that obtained by LDA. That results in a
much lower storage cost with higher recognition
performance.

(4) By proving the equivalence between KDLA and KPCA com-
bined with DLA, we can better understand KDLA, i.e., the
subspace spanned by KDLA is equal to the subspace spanned
by DLA on the principal components of KPCA.
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